
dnastack
Release 0.1

Ben Shirt-Ediss

Aug 11, 2021

CONTENTS:

1 Installation 3
1.1 Mac OS . 3
1.2 Linux Ubuntu . 4
1.3 Windows 10 . 4

2 Quick Demo 5

3 Running a Simulation 9
3.1 General Syntax . 9
3.2 Defining a Gel . 9
3.3 Specifying Washing Parameters . 10

4 Output Pickle File 11
4.1 Dictionary keys to general properties of the simulation . 11
4.2 Dictionary keys to chemistry state at each simulation stage . 12

5 Virtual Gel Image 15

i

ii

dnastack, Release 0.1

This documentation describes how to install and run dnastack, a stochastic model of the the DNA stack chemistry
described in paper: A Last-In First-Out Stack Data Structure Implemented in DNA, Lopiccolo and Shirt-Ediss, et al.,
Nature Comms 12, 4861 (2021) doi:10.1038/s41467-021-25023-6.

dnastack is written in Python 3 and makes use of the stocal simulation engine for polymer chemistries that have a
variable size state space. The simulation outputs the predicted concentration of each DNA polymer species at the end
of an experiment and these concentrations can be further displayed as virtual polyacrylamide gel images.

The source code for the model is available on Bitbucket, released under an MIT Licence.

CONTENTS: 1

https://doi.org/10.1038/s41467-021-25023-6
https://pypi.org/project/stocal/
https://bitbucket.org/engineering-data-structure-organoids/dnastack

dnastack, Release 0.1

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

Typical installation time is 10 minutes.

1.1 Mac OS

Installation is via the terminal. Open Terminal.app (in Applications/Utilities).

1. Change to the directory where you want to put the source code of dnastack. For example:

cd /Users/myname

2. Download a copy of the source code, using the following command:

git clone https://bitbucket.org/engineering-data-structure-organoids/dnastack.git

Note: Running the git command for the first time on Mac OS may require you to download developer tools. If these
are not installed, a dialog box should prompt you to install them.

3. Change to the newly created dnastack directory:

cd dnastack

4. Make a new python3 virtual environment, enable it and install the required packages:

python3 -m venv venv
source venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt

5. Run the program by following the Quick Demo page, or the more detailed instructions on the Running a Simula-
tion page.

6. Done? Leave the virtual environment by typing:

deactivate

If you would like to make virtual gel images of simulation output (see page Virtual Gel Image), follow the additional
steps below to install ImageMagick.

7. Install the Mac OS package manager Homebrew. This is necessary for installing ImageMagick in the next step.
As described at https://brew.sh, install Homebrew by running command:

3

https://brew.sh

dnastack, Release 0.1

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
→˓master/install.sh)"

8. Install ImageMagick using homebrew:

brew install imagemagick

1.2 Linux Ubuntu

Installation is via the terminal.

1. Update your repositories and install git:

sudo apt-get update
sudo apt install git

2. Install pip for Python3:

sudo apt-get install build-essential libssl-dev libffi-dev python-dev
sudo apt install python3-pip

3. Use pip to install virtualenv:

sudo pip3 install virtualenv

4. If you would like to make virtual gel images of simulation output (see page Virtual Gel Image), install ImageMag-
ick:

sudo apt install imagemagick

5. Follow the same instructions as for Mac OS above, up to Mac OS step 6.

1.3 Windows 10

We recommend installing a Linux Ubuntu environment on Windows, and then following the Linux installation instruc-
tions above. A Linux environment can be installed by using the Windows Subsystem for Linux (available on 64-bit
versions of Windows 10). Alternatively, using Ubuntu under VirtualBox is another option.

4 Chapter 1. Installation

https://www.virtualbox.org/

CHAPTER

TWO

QUICK DEMO

To run a quick demo to test that the installation works:

1. Change to the dnastack directory and activate the Python virtual environment (if not already activated):

cd dnastack
source venv/bin/activate

2. Then run a stochastic simulation of adding DNA strands in order start - push - X (each at 300nM concentration
and separated by a wait time of 30 minutes) by typing:

python3 washing.py example 3

After around 1 minute of computation, output similar to the following should be produced:

--
STOCAL stochastic simulation of stack washing
spX
example lane 3

PHI_0 = 33% volume fraction of supernatant species SURVIVE each wash via non-specific␣
→˓bead binding initially, when normalised bead mass = 1.0
MU = 10% of remaining beads LOST on each wash
VOL = 1.50000e-13 litre (100nM = 9033 particles, 300nM = 27099 particles)

Bead mass remaining: 1.00
Incubating linker (200 nM) with beads, waiting sufficient time to get 100%␣

→˓binding
--- Wash ---
Bead mass remaining: 0.90
Adding s (300 nM) to reaction, waiting sufficient time to get 100% reaction␣

→˓completion
--- Wash ---
Bead mass remaining: 0.81
Adding p (300 nM) to reaction, waiting 30.00 mins
(Recording chemistry state, supernatant state, and supernatant state after a␣

→˓releaser)
--- Wash ---
Bead mass remaining: 0.73
Adding X (300 nM) to reaction, waiting 30.00 mins
(Recording chemistry state, supernatant state, and supernatant state after a␣

→˓releaser)
(continues on next page)

5

dnastack, Release 0.1

(continued from previous page)

Done.

--
Final state: (not directly observable by electrophoresis)
8 nM ks 725
0 nM s 30
0 nM p 4
6 nM ksp 576
0 nM sp 33
123 nM X 11126
119 nM kspX 10772
0 nM Xp 52
0 nM pX 14
6 nM spX 569
10 nM XpX 982
0 nM kspXp 56
10 nM kspXpX 951
0 nM spXp 2
0 nM spXpX 58
0 nM pXpX 1
0 nM XpXp 2
0 nM kspXpXpX 75
0 nM XpXpX 72
0 nM kspXpXp 8
0 nM spXpXpX 4
0 nM XpXpXpXpX 1
0 nM XpXpXpX 5
0 nM kspXpXpXpX 5
0 nM kspXpXpXpXpXpX 1

Supernatant of final state:
0 nM s 30
0 nM p 4
0 nM sp 33
123 nM X 11126
0 nM Xp 52
0 nM pX 14
6 nM spX 569
10 nM XpX 982
0 nM spXp 2
0 nM spXpX 58
0 nM pXpX 1
0 nM XpXp 2
0 nM XpXpX 72
0 nM spXpXpX 4
0 nM XpXpXpXpX 1
0 nM XpXpXpX 5

Supernatant state AFTER further wash, and releaser applied: (released stacks present)
7 nM s 658

(continues on next page)

6 Chapter 2. Quick Demo

dnastack, Release 0.1

(continued from previous page)

3 nM sp 320
110 nM spX 10001
0 nM spXp 26
10 nM spXpX 910
0 nM spXpXpX 70
0 nM spXpXp 6
0 nM spXpXpXpX 4
24 nM X 2194
0 nM Xp 6
2 nM XpX 195
0 nM XpXpX 16
0 nM XpXpXpX 1
68 nM z 6219

The numerical data reported are the final concentrations (and particle numbers) of all species in the stack chemistry.
Note that the output you obtain will probably vary slightly due to the simulation being stochastic.

See the Running a Simulation page for more detailed running instructions.

Also, see the Virtual Gel Image page for how to turn numerical simulation results into a more intuitive virtual poly-
acrylamide gel image.

7

dnastack, Release 0.1

8 Chapter 2. Quick Demo

CHAPTER

THREE

RUNNING A SIMULATION

This page contains more detailed instructions about running a DNA stack simulation.

Before running any simulation, change to the dnastack directory and activate the Python virtual environment:

cd dnastack
source venv/bin/activate

3.1 General Syntax

To run a stochastic simulation of gel “example”, lane 2, the command is:

python3 washing.py example 2

The name of the gel is specified first, followed by the lane on the gel to simulate.

The output of the simulator is a pickle file placed in the results directory at the end of the simulation (in the above
case, sim_example_2.pkl will be created). This pickle file contains the model state after each brick is added (see
Output Pickle File for details).

When simulations of one or more lanes of a gel have been executed, a virtual image of the gel can be produced as
described in Virtual Gel Image.

Note: Stochastic simulation proceeds via the Gillespie Direct algorithm, which explicitly simulates every reaction.
Simulations where many strands are added one after the other can take significant time to execute (hours, or sometimes
days). The system volume in constants.py is set to 1.5e-13 litres (0.15 picolitres) to keep the species populations at
acceptable levels for computationally tractable simulations.

3.2 Defining a Gel

To define a gel to simulate, a simple python function in the file constants.py must be created that has the name of
the gel.

The function example() in constants.py, for instance, specifies a demo gel called “example”. The code inside the
function describes what DNA strands are put in each of the lanes of the gel. Looking at the code for lane 2, we see:

def example(lane) :
if(lane == 2) :

(continues on next page)

9

dnastack, Release 0.1

(continued from previous page)

bricks_add_order = ['s', 'p']
bricks_add_conc = [300e-9, 300e-9]
bricks_wait_time = [30*60, 30*60]

This code means that in lane 2 of “example” gel:

• a start strand is initially added at 300nM. . .

• then 30*60 seconds are waited (30 minutes). . .

• after which a push strand is added at 300nM..

• followed by a wait of a further 30 minutes.

3.3 Specifying Washing Parameters

If not specified, the simulation uses the default MU and PHI washing parameters, specified in constants.py.

• PHI is the initial fraction of supernatant species transferred through the wash to the next reaction (between 0 and
1, inclusive).

• MU is the fraction of beads lost on each wash (between 0 and 1, inclusive)

For convenience, these two parameters can also be specified on the command line, overriding the default values in
constants.py. For example, to specify PHI = 0.2, MU = 0.1 use:

python3 washing.py example 2 0.2 0.1

10 Chapter 3. Running a Simulation

CHAPTER

FOUR

OUTPUT PICKLE FILE

On completion, the simulator outputs a pickle file of results for each gel lane (i.e. each individual experiment) to the
results directory. Pickle is a format used by Python to save data. This page explains the format of the pickle data file.

You can load a pickle file by writing the following Python script:

import pickle
stackdata = pickle.load(open("my_results_file.pkl", "rb"))

Each pickle file contains a dictionary with the following keys. Underneath each key is described the attribute that it
maps to.

4.1 Dictionary keys to general properties of the simulation

stackdata[“bricks_add_order”]

List detailing the order in which strands were added to solution. E.g.

['s', 'p', 'X']

stackdata[“bricks_add_conc”]

List of Molar concentrations that strands above were added at. E.g.

[3e-07, 3e-07, 3e-07]

for 300nM concentrations.

stackdata[“bricks_wait_time”]

List of reaction wait times (seconds) that elapsed after each strand above was added, before the next washing step was
carried out. E.g.

[1800, 1800, 1800]

for 30 minute wait times.

stackdata[“rule_name”]

List of reaction rule names in the reaction model describing the DNA stack chemistry.

['LH1', 'LH2', 'LH3', 'H1', 'H2', 'LH4', 'LH5', 'LH6', 'SD1', 'SD2', 'SD3', 'SD4', 'SD5',
→˓ 'SD6', 'SD7', 'SD8', 'C1', 'C2', 'C3', 'C4']

11

dnastack, Release 0.1

4.2 Dictionary keys to chemistry state at each simulation stage

The remaining keys in the dictionary track the state of the model chemistry as each strand is added, one after the other.
The keys have a number on the end, N, which indicates that the key refers to the chemistry state when N strands have
been added after the original start strand.

The diagram below describes which chemistry state is referred to by a key followed by a number N:

For example, keys rule_firing1, finalstate1, supernatant1, refer to the chemistry state after the first strand
following start is added and a wait time elapses. Key supernatant_releaser1, on the other hand, refers to the
chemistry state when the first strand following start is added and (i) a wait time elapses, (ii) a wash happens, (iii)
releaser is added and (iv) a further wait time elapses.

Contents of the keys are described below.

stackdata[“rule_firingN”]

List of the total number of times each rule has fired, after the Nth strand following start is added and a waiting time
elapses. E.g.

[234, 23, 1, 0, 12, 0, 34, 0, 345, 550, 0, 1, 0, 6, 0, 0, 12, 35, 0, 0]

stackdata[“finalstateN”]

Dictionary of the whole system state after the Nth strand following start has been added and a waiting time elapses.
This is the state of every molecular species in the system, including all species tethered to beads and all species in
supernatant.

The dictionary keys are species (strings) and the dictionary values are tuples giving (particle number, nM concentra-
tion). For example:

12 Chapter 4. Output Pickle File

dnastack, Release 0.1

{'ks': (878, 9.719688673190916), 's': (187, 2.0701387037433956), 'p': (10634, 117.
→˓7211496021779), 'ksp': (13755, 152.27143245984172), 'sp': (2710, 30.000405813607497)}

stackdata[“supernatantN”]

Dictionary of species existing in the supernatant solution only, after the Nth strand following start has been added and
a waiting time elapses. Format same as above. E.g.

{'s': (187, 2.0701387037433956), 'p': (10634, 117.7211496021779), 'sp': (2710, 30.
→˓000405813607497)}

The supernatant does not contain any stacks tethered to beads (species starting “k”).

stackdata[“supernatant_releaserN”]

Dictionary of species existing in the supernatant when, after the Nth strand following start has been added, the system
is washed, releaser is added and then a waiting time elapses.

For example:

{'s': (501, 5.546200484360648), 'sp': (13363, 147.93189036429408), 'p': (2225, 24.
→˓63132949641206), 'z': (4897, 54.21106541300218)}

These species contain the stacks released from the beads, a fraction of any other supernatant species and any surplus
releaser species (“z”).

The biotinylated DNA linker strands that are attached to sepharose beads (“k”) remain on the beads, possibly hybridised
to releaser, and do not make it into the supernatant in this case.

Note: Kinetic trajectory information is NOT recorded in the results pickle file, as this tends to have an extremely large
size. Only end states of each reaction stage are recorded.

4.2. Dictionary keys to chemistry state at each simulation stage 13

dnastack, Release 0.1

14 Chapter 4. Output Pickle File

CHAPTER

FIVE

VIRTUAL GEL IMAGE

Virtual gel images can be created for DNA stack simulations that use only X signals. These X signals are interpreted
as linear write signals when the gel image is created.

Warning: A simulation experiment should not involve Y signals if you wish to display the output as a virtual gel
image. Only X signals are allowed, and they are interpreted as write signals when a gel image is made.

To take an example, the function example_vgel() in constants.py defines a demo gel that can be displayed as a
virtual gel image.

First, run a simulation of each lane of the gel, as described previously:

python3 washing.py example_vgel 2
python3 washing.py example_vgel 3
python3 washing.py example_vgel 4
python3 washing.py example_vgel 5

The simulation results of each lane will be stored in the results directory as a pickle file.

When all simulations are complete, two alternative virtual gel images can be made:

1. A virtual gel showing the state of the supernatant solution following a final wash and addition of releaser.
The releaser moves stacks attached to beads into supernatant solution. This type of virtual gel is used to get an
idea of system state, and is used Figure 2 of the paper:

python3 vgel.py example_vgel releaser

15

dnastack, Release 0.1

2. A virtual gel showing the state of the supernatant solution only, after the last strand was added and the final
wait time waited. Stacks attached to beads remain attached to beads and do not make it into supernatant solution.
This shows the “readout” of the DNA stack device as used in Figure 4c and 4d (lanes 6,7,8) of the paper:

python3 vgel.py example_vgel supernatant

16 Chapter 5. Virtual Gel Image

dnastack, Release 0.1

The above two commands each place a PNG image of the virtual gel in the results directory. The external program
ImageMagick is used to rotate the images. Additionally, a text file is made, detailing the bands in each lane and their
relative mass concentrations.

The NEB low molecular weight ladder is displayed in lane 1 of the virtual gel.

Band thickness is controlled by the MASS_CONC_TO_LINEWIDTH_MULTIPLIER parameter in vgel.py.

See paper Supplementary Information for electrophoretic mobility analysis of linear DNA stack complexes.

17

	Installation
	Mac OS
	Linux Ubuntu
	Windows 10

	Quick Demo
	Running a Simulation
	General Syntax
	Defining a Gel
	Specifying Washing Parameters

	Output Pickle File
	Dictionary keys to general properties of the simulation
	Dictionary keys to chemistry state at each simulation stage

	Virtual Gel Image

